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1 INTRODUCTION 

1.1 BACKGROUND AND SIGNIFICANCE 
 

The Zambezi River is a very important water resources with its catchment area covering most 

parts of Southern Africa. It is a habitat to a wide range of plant and animal species. Humanity in 

this region just like other animals depend on water from the Zambezi River and its tributaries. Its 

dependence ranges from provision of potable water, agriculture, power, manufacturing, mining, 

tourism and many other sectors (World Bank 2010). With such benefits from the river, the 

human population is proved to be rapidly increasing. For example, an annual increase of 3.9% in 

Africa (the highest in the world) has been recorded with most of the increase in the Southern part 

of the continent, which is mostly covered by this basin (World Bank, 2010). Despite the 

population boom, industrialization and urbanization, not all Africans have access to clean water 

and sanitation. Water availability varies from country to country   as  some parts of Southern 

Africa receive very low mean annual rainfall (Namib and Kalahari deserts) and low river flows 

with others receiving very high precipitation (areas in the sub tropics) hence high river flows.  

With this in mind, more water is needed to meet the increasing demands in  clean water, 

sanitation, irrigation, power (Hydroelectric) and many for factors increasing the demand (O 

Serdeczny et al.,2016).  

 

Climate variability (a variation in world climatic patterns due to effects of human activities) is 

another phenomena impacting on water availability in the Zambezi River Basin. The climate of 

an area is closely tied to its location relative to the Intertropical Convergence Zone (ITCZ) often 

called the ‘climate equator’. This is an area around the geographic equator where north and south 

trade winds converge, rise and circulate back. As the winds converge, moist air rises. It then 

cools causing water vapor to convert to rainfall. Areas closest to the ITCZ receive the highest, 

frequent and reliable rainfall with a reduction as you go further south and north of the ITCZ. 

Because the earth is tilted on its axis relative to its orbit around the sun, the amount of heat 

received from the sun is not equal (in the north and southern hemisphere) and that gives rise to 

seasonal climatic changes.  In January most of the precipitation is in the southern part of the 
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equator and shifts to the north as the year progresses (around June). Although these climatic 

variables show a very close link between the geographical location of an area relative to the 

ITCZ position, many studies predict a general change in precipitation patterns, temperature and 

dryness in Southern Africa, most of which is within the Zambezi River Basin. 

 

Studies predict an increase in the mean annual surface air temperature of about 4ºC due to global 

warming and a reduction in the mean annual rainfall (by up to about 20%) by the end of the 21st 

Century (Engelbrecht et al (2011)). Similarly, there is evidence of marginal increase in 

precipitation in some parts of the basin and across the entire continent (Schlosser and Strzepek,  

2015; Engelbrecht et al, 2011), with more extreme events (droughts, floods, heat waves and veld 

fires) occurring very often (Kenabatho et al., 2012).  The projected aridity changes indicated by 

the Aridity Index also show a strong deterioration towards more arid conditions due to low 

rainfall in the Southern part of Africa (Serdeczny et al., 2016). These factors are going to impact 

negatively on the already existing water resources and low and unreliable rainfall together with 

prolonged droughts will result in low surface water flows and low groundwater recharge rate 

(Kenabatho et al., 2012). Increasing temperatures cause high evaporation rates. In combination 

with loss of vegetation cover due to overstocking, overgrazing and deforestation there is an 

accelerated rate of loss of soil moisture that will cause a low agricultural produce impacting 

negatively on food security in Southern Africa.  

 

Researchers also reveal that in the Zambezi River Basin, a slight climatic change case results in a 

32% fall in energy production (Belfuss R, 2012) affecting other sectors such as mining and 

manufacturing which are much reliant on power. Taking all the issues above into consideration, 

there is a rapid rise in water demand due to population increase and urbanization which 

automatically expands the human dependence on the Zambezi River Basin.  

Despite this increasing dependence, water availability is decreasing due to climate change, which 

implies the current abundance of water on most parts of the Zambezi River Basin is not likely to 

last (Beck and Bernauer, 2011).  

Although studies may have assessed the implications of water demand and climate change 

collectively (Beck and Bernauer T, 2011), and predict dryness across the region (Kenabatho et 

al., 2012), they do not reveal the dryness distribution across basin’s riparian countries. This study 
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therefore, focuses on the dryness characteristics of the basin as a result of increased water 

demand, increasing temperatures and change in precipitation patterns due to El Nino.   

 

It is therefore in this context that it is proposed to make a holistic study on the changes in the 

dryness condition across the Zambezi basin so as to assess the trends for the futuristic water 

resources management for this basin. 

 

1.2 PROBLEM STATEMENT 
 

The rapidly increasing population and economic growth in Southern Africa has a very large 

impact on water demand. The impacts are further increased by the climatic variations due to El 

Nino. This is evident as extreme events (such as droughts and heat waves) have been common in 

the past three decades with frequent water shortages (portable water) as most water resources 

have been below normal to almost empty (Dams and rivers) due to unreliable and low 

precipitation. Scientifically, if the rate of loss of soil moisture exceeds the amount of 

precipitation, dryness is said to occur, in that case leading to droughts. With most of Southern 

African population heavily dependent on the Zambezi for critical economic activities such as 

agriculture, Hydro power, fishing, it is necessary to study the dryness and wetness conditions 

based on historical data and predict the future so as to inform the relevant policies and decision 

makers on adaptive measures. 

1.3 DESCRIPTION OF STUDY AREA 
The area under study shall be the Zambezi River Basin. The river basin drains about 1.4 million 

km2 across Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania, Zambia and 

Zimbabwe.  The river starts from a small spring in the Northwestern Zambia and stretches for 

approximately 3000 km across Zimbabwe, Malawi, through Mozambique into the Indian Ocean, 

sustaining a population of 40 million people (projected to be 51 million by 2025) (SADC 2013). 

The river itself rises from north of Zambia through Angola and other riparian countries to feed 

the Indian Ocean through Mozambique.  It hosts numerous urban areas including most of 

Zambian cities and Harare (Zimbabwean Capital City). The natural environment is characterized 

by lakes (Nyasa, Malawi), gorges, water falls (including the famous Victoria Falls in Zambia) 
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and a very diverse flora and fauna species. The ecology and natural environment has a socio-

economic influence on humanity since it directly hosts (facilitates) human activities such as 

mining, fishing, agriculture, forestry, manufacturing and tourism all relying on the hydropower 

electricity utilizing river water (WMO, 2009). The Zambezi River Basin map showing all 

riparian countries and catchment area (Highlighted) is shown in figure 1. Figure 2 further details 

the sub basins of the total catchment. 

 

 

 

 

Figure 1-1.Zambezi River Basin Map (Source:ZAMCOM) 

 

The river is fed by a number of tributaries who receive water from smaller streams in the sub 
basins. Such rivers in sub basins are detailed in figure 2.  
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Figure 1-2. Sub basins and tributaries of the Zambezi River (Source: www.researchgate.com) 

 

The hydrology of the basin is dependent on a number of variables. The variation in precipitation 
(table 1.) in summer is due to Inter Tropical Convergence  zone between the North east Monsoon 
and the South east trade winds for the middle and lower Zambezi and the Congo air boundary 
between the South West Monsoon and the South east Trades for the upper Zambezi (Moore at 
al., 2007). The further then South the boundaries move, the more the precipitation as seen in 
table 1. Drier conditions are experienced in winter as the ITCZ shifts to the north, and so most of 
the flow contribution is from the North (Moore at al., 2007). The mean monthly changes in flow 
are depicted in table 2. 
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Table 1-1: Precipitation data for the Zambezi River Basin (Source: WMO, 2009) 

Sub basin 
Mean annual precipitation 
(mm) 

Kapombo 1211 
Upper Zambezi 1225 
Lungue Bungo 1103 
Luanginga 958 
Barotse 810 
Cuando/Chobe 797 
Kafue 1042 
Kariba 701 
Luangwa 1021 
Mupata 813 

Shire River and Lake 
Malawi/Niassa/Nyasa 1125 
Tete 887 
Zambezi Delta 1060 
Zambezi River Basin, 
mean 956 

 

Table 1-2: Zambezi River mean monthly flows in m3s-1 (Source: Moore et al., 2007) 

Station Chavuma Lukulu Katima Mulilo Victoria Falls 
Period 
(Years) 

1959/60-
2001/02 

1950/51-
2001/02 

1967/68-
2001/02 

1951/52-
2001/02 

Oct 68 271 306 293 
Nov 94 310 320 297 
Dec 228 468 430 438 
Jan 655 803 678 686 
Feb 1411 1294 1211 1184 
Mar 2031 1645 2374 2175 
Apr 1770 1523 3129 3007 
May 684 944 2427 2613 
Jun 310 575 1326 1621 
Jul 188 434 691 845 
Aug 124 361 467 519 
Sep 83 306 364 376 
Mean 
annual 637 745 1144 1171 
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1.4  RESEARCH OBJECTIVE 
How is the Zambezi River Basin changing in terms of climate variability and extreme events? 

1.4.1 SPECIFIC RESEARCH OBJECTIVES 

 To analyze dryness/wetness conditions of the Zambezi River Basin based on historical 

data 

 To produce a dryness/wetness severity map for the Zambezi River Basin based on the 

analysis 

 To project the likely dryness/wetness conditions of the Zambezi River Basin in the 

next five years.  

1.5 RESEARCH QUESTIONS 
 

Table 1-3: Research objectives and questions 

 

Objectives Research Questions 

To analyze 

dryness/wetness conditions 

of the ZRB based on 

historical data. 

Is the average soil moisture increasing or decreasing? 

What is the rate of increase of the dryness or wetness? 

What is the seasonal outlook of the basin using available data? 

To produce a 

dryness/wetness severity 

map for the ZRB based on 

the analysis 

Which areas are wetting and which ones are drying? 

What is the rate of drying/wetting per location? 

How severe is the drying/wetting per location? 

To project the likely 

dryness /wetness of the 

ZRB in the next two 

decades 

What is the likelihood of the basin drying/wetting in the next 

two decades? 

 

1.6 SCOPE OF RESEARCH 
The study shall cover the Zambezi river basin’s riparian countries. However, this shall depend on 

the availability of data as the scope might be scaled down if precipitation data of some riparian 
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countries is not available. Similarly, if all the data is available, the scope can be increased to 

include Lesotho, Swaziland and South Africa even though they do not form part of the basin.  

The tool to be used for data analysis is the Standardized Precipitation Index/Standardized 

Precipitation Evaporation (SPEI) as described by McKee et al., 1992 and Vicente-Serrano et al., 

2010.  In addition, related analysis such as trends, and change point/intervention analyses will be 

undertaken.  

1.7 BENEFITS AND BENEFICIARIES 
The study shall reveal the dryness/wetness conditions of the study area in response to climate 

change. This information is beneficial in the sense that it will inform future decision making for 

policy makers in various organizations and enterprises on adaptive measures to take within the 

context of climate change. These are shown in Table 1-4. 

Table 1-4: Benefits and beneficiaries of this study 

Beneficiary sector Benefits 

Agriculture 

Development of climate adaptive technologies in plant and animal 

production. 

Prediction of likelihood climate borne plant and animal diseases. 

Forecasting of possibility of low agricultural produce so as to take 

necessary measures. 

Political 

Development of policies regarding water supply, agriculture and other 

sectors affected by dryness/wetness of the land. 

Manufacturing 

Development of better manufacturing techniques in response to raw 

material quality (for example, the quality of timber may be influenced by 

the availability of soil moisture where it was grown).   

Education 

Dissemination of information so as to inform the society on 

dryness/wetness adaptation measures in different sectors such as 

agriculture (for example, new planting technologies). 

Forestry Understanding of how forestry resources may change in future. 

 

1.8 COLLECTION AND COLLATION OF EXISTING DATA 
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Collation of data shall be based on available data which will be collected during the project. It is expected 
that the NEPAD Southern African Network of Centres of Excellence (SANWATCE) hub at Stellenbosch 
University will play a key role in facilitating collection of data through relevant authorities within the 
Zambezi River Basin.  

 

2 METHODOLOGICAL APPROACH 

2.1 CLIMATE VARIABILITY 

2.1.1 HOMOGENEITY TEST 
 

Data used in hydrological studies is required to be stationary, consistent, and homogeneous while 
used for frequency analyses or to simulate a hydrological process (Dahmen and Hall, 1990). 
Climate data collected at a given weather station during a period of several years may be non-
homogeneous. A homogeneity test will be carried out on the data series using one base station 
against the averages of the rest of the stations in the study area through the method of 
Cumulative Residuals. 
 

2.1.1.1 CUMULATIVE RESIDUALS 
 
The average climatic data series generated from the rest of the meteorological stations from the 
study area is assumed to be homogeneous so that any climatic changes observed are as a result of 
natural occurrence. If data from a base station is homogeneous with respect to other stations, 
then the cumulative residuals from that data should not be biased (Allen et al. 1998).  The bias 
hypothesis can be tested for a given probability p. This is done by confirming whether the 
residuals can be contained within an ellipse with axes β and α. The procedure for the analysis to 
be undertaken in this study is presented as follows (Allen et al. 1998): 
 

(i) Regionalized homogeneous data set will be created by averaging the observations at 
various synoptic stations within the study area denoted by Xi and the base station as Yi. 

(ii) A regression analysis will be performed on a plot of the base station against the mean of 
the other stations. 

(iii) The regression generated in 2 above will be used to compute estimated values of Yi 
(Yest) values in reference to the Xi data set. 

(iv) Residuals of the observed Y values to the regression line will be computed, thus (Yi-Yest) 
and accumulated.  

(v) A probability for accepting the hypothesis of homogeneity will be selected. The value of 
non-exceedance q = 0.95 (or 95 %) is desirable according to (Allen et al., 1998).  

(vi) Compute the parameters α and β as follows:  

α =
n
2

  

where n  is the number of years under consideration 
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β =
n

√n − 1
Z୮S୶୷  

where  Z୮  and S୶୷  is  the standard normal variate for the probability of p and accumulated 
residual standard deviation, respectively.  

The parametric equation of the ellipse is given by: 

X = α cos θ 

Y = β sin θ 

With ɵ varying from 0 to 2 Π 

(vii) Plots of cumulative residuals and the ellipse against time will be done and if the 
graph of the cumulative residuals lies inside the ellipse, the hypothesis of homogeneity is 
accepted at the 95 % level of confidence. 

 

2.1.2 INTERVENTION ANALYSIS 
 
An intervention analysis will be undertaken to identify any possible changes (or point of 
intervention) in climate regimes for stations across the basin. This will be carried out using the 
cumulative deviation test. The test is based on rescaled cumulative sum of the deviations from 
the mean. This technique has been used in detecting changes in rainfall (Parida and Moalafhi, 
2008, Kenabatho et al., 2012 and Byakatonda et al., 2018). If the annual time series are 
represented by x1, x2, x3,……,xn over n number of years, the computed  CUSUM value Yi at any 
time i is given by: 

࢏ࢅ = ࢏࢞ + ૚ି࢏࢞ + ૛ି࢏࢞ + ⋯ ૚࢞ − .࢏
∑ ࢏࢞

࢔
࢏

࢔
                                   (2.1) 

                                      

The computed CUSUM values are plotted against time and examined for any suspected point of 
intervention. When the series under test is free from any interventions, the plot should normally 
oscillate around the horizontal axis. A observable decline or rise of this plot would suggest the 
possibility of intervention from the year of observation (corresponding to the relevant ‘i’) of such 
a change (Parida and Moalafhi, 2008). Positive slopes on these charts indicate a period of above 
average values and negative indicate otherwise (Byakatonda et al., 2018). Figure 2.1 shows an 
example of a possible point of intervention/change (shown by a red arrow).  
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Figure 2-1: CUSUM plots showing a point of intervention/change 

 

2.1.2.1 TEST FOR INTERVENTION ANALYSIS 
 
If any intervention is detected, the two series (i.e. before and after the point of intervention) will 
be split into  two no overlapping samples to be further investigated using split sample analysis 
and the student t test for investigating the significance of intervention. A suitable statistic for 
testing the null hypothesis H଴: Xഥଵ = Xഥଶ  for the two samples with means തܺଵ and ഥܺ ଶ   is given in 
Parida and Moalafhi (2008) and Kenabatho et al. (2012) 
 

࢚࢚ =
|ഥ૛ࢄഥ૚ିࢄ| 

ඨ
൫࢔૚ష૚൯࢙૚

૛శ൫࢔૛ష૚൯࢙૛
૛

൫࢔૚శ࢔૛ష૛൯
൬ ૚

૚࢔
ା

૚
૛࢔

൰

                                                         (2.2) 

                   

Where n is the number of the data set and s is the standard deviation. The null hypothesis is 
usually accepted within the two sided critical region U is:  

{−∞, t(v, 2.5%)}U{t(v, 97.5%), +∞}   With v = (nଵ − 1 + nଶ − 1) degrees of freedom. 
 

2.1.3 TREND ANALYSIS 

2.1.3.1 MONOTONIC TREND TEST  
 
Tests for the detection of significant trends in climatologic time series can be categorized as 
parametric and non-parametric. Parametric trend tests require data to be independent and 
normally distributed, while non-parametric trend tests require only that the data be independent 
(Gocic and Trajkovic, 2013). Non-parametric methods such as Mann-Kendall will be used to 
detect trends in the data for the basin. 
 
The method has been used extensively across different climatic zones to assess the significance 
of trends in hydro-meteorological time-series data like in (Modarres and de Paulo Rodrigues da 
Silva, 2007; Kampata et al., 2008; Parida and Moalafhi, 2008; Petrow and Merz, 2009; Wang et 
al., 2015; Byakatonda et al., 2018).The Mann-Kendall test statistic has been shown to be more 
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robust than parametric tests when dealing with skewed data and outliers in a data series (Helsel 
and Hirsch, 1992). The Mann-Kendall statistic S is given by;  
 
ࡿ = ∑ ∑ ࢐࢞൫࢔ࢍ࢙ − ࢔൯࢑࢞

ା૚࢏ୀ࢐
૚ି࢔
࢏          (2.3) 

     

Where n is the number of data points, xk and xj are the data values in time series k and j (j>k), 
respectively and sgn(xj−xk) is the sign function as: 

 

࢐࢞൫࢔ࢍ࢙ − ൯࢑࢞ = ൞

+૚    ࢌ࢏ ൫࢐࢞ − ൯࢑࢞ > ૙

૙      ࢌ࢏ ൫࢐࢞ − ൯࢑࢞ = ૙

−૚    ࢌ࢏ ൫࢐࢞ − ൯࢑࢞ < ૙

                                                      (2.4) 

 
The test statistic represents the number of positive differences minus the number of negative 
differences for all the differences between adjacent points in the time series.  
 
For circumstances where the sample size n>10, the standard normal test statistic ZS is computed 
using 
 
 
 

࢙ࢆ =

ە
ۖ
۔

ۖ
ۓ

૚ିࡿ

ඥ(ࡿ)࢘ࢇࢂ
ࡿ ࢌ࢏  > ૙

૙  ࡿ ࢌ࢏ = ૙
ା૚ࡿ

ඥ(ࡿ)࢘ࢇࢂ
ࡿ ࢌ࢏  < ૙

                                                        (2.5) 

 

Where Var(s) is the variance of the sample also given by 
 

(ࡿ)࢘ࢇࢂ =
∑ି(ା૞࢔૛)(૚ି࢔)࢔ ࢓(ା૞࢏࢚૛)(૚ି࢏࢚)࢏࢚

࢏

૚ૡ
                                                            (2.6) 

 

Where n is the number of data points, m is the number of tied groups and ti denotes the number 
of ties of extent i. A tied group is a set of sample data having the same value. Taking a data set of 
2, 3, 1, 3, 1 and 3 , 
t3=1(one set of three values), t2=1(one set of two value) and t1=1 (one set of untied values) 
Positive values of Zs designate an upward trend and negative values otherwise.  
Testing trends is done at the specific α significance level. When |ZS| > Z1−α/2 , the null hypothesis  
of no trend is rejected and a significant trend exists in the time series.   Z1−α/2 is obtained from the 
standard normal distribution table. In this research, significance levels α=0.01 and α=0.05 will be 
used. 
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1.1.6 SEN'S SLOPE ESTIMATOR 
 
The Mann-Kendall’s trend test is only able to indicate the direction of the trend and as such does 
not reveal the significance of the trend. The test for significance of a linear dependence between 
two continuous variables, the meteorological data and time (Y and X ) will be investigated by 
determining whether the regression slope coefficient for the explanatory variable is significantly 
different from zero by applying the Sen’s slope criteria (Helsel and Hirsch, 1992). 
 
Testing the significance of the slope of trend in the sample of N pairs of data will be 
accomplished using the non-parametric procedure developed by Sen (1968). The slope of N pairs 
of data sets is given by: 
 

࢏ࡽ =
࢑࢞ష࢐࢞

࢑ି࢐
࢏ ࢘࢕ࢌ  = ૚, ૛, … . . ,  (2.7)                                                     ࡺ

Where xj and xk are the data values at times j and k (j>k), respectively. 

Should there be single measurements for each time period, then  N =
୬(୬ିଵ)

ଶ
 ; 

Where n is the number of time periods. If there are multiple measurements in one or more time 

periods, then N <
୬(୬ିଵ)

ଶ
  

 
The N values of Qi are ranked in ascending order with the median of slope or Sen's slope 
estimator computed as 
 

ࢊࢋ࢓ࡽ =

ە
ۖ
۔

ۖ
ۓ (శ૚ࡺ)ࡽ

૛
ࢊࢊ࢕ ࢙࢏ ࡺ ࢌ࢏ 

ࡽ
ቀ

ࡺ
૛ቁ

ାࡽ
቎

(శ૛ࡺ)
૛

૛
൘ ቏

૛
࢔ࢋ࢜ࢋ ࢙࢏ ࡺ ࢌ࢏ 

                                                                     (2.8) 

 

The Qmed sign reflects data trend reflection, while its value indicates the steepness of the trend 
(Gocic and Trajkovic, 2013). To determine whether the median slope is statistically different 
than zero, a confidence interval of Qmed at specific probability will be obtained. 
The confidence interval about the time slope as applied in Gocic and Trajkovic (2013) while they 
were analyzing significance of trends is given by 
 
ࢻ࡯ = ࢆ

ቀ૚ି
ࢻ
૛

ቁඥ(2.9)           (ࡿ)࢘ࢇࢂ 

 
  
Where Var(S) is defined earlier and Z1−α/2 is the statistic obtained from the standard normal table. 
In this study, confidence intervals will be established at two significance levels (α=0.01 and 
α=0.05). 

From Cα above, the Mଵ =
୒ିେಉ

ଶ
 and Mଶ =

୒ାେಉ

ଶ
 are obtained. The lower and upper limits of the 

confidence interval, Qmin and Qmax, are the M1
th largest and the (M2+1)th largest of the N ordered 
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slope estimates. The slope Qmed  statistically differs from zero if the two limits (Qmin and Qmax) 
have similar sign (Gocic and Trajkovic, 2013).. 
 
The Sen's slope estimator method has found use in a number of analyses of hydro-meteorological 
time series, including recent studies (Petrow and Merz, 2009; Tabari et al., 2011; Gocic and 
Trajkovic, 2013).  

2.2 DRYNESS/WETNESS INDICES 
Two indices will be considered in this report. These are  

(i) Standardized Precipitation Index (SPI), or 
(ii) Standardized Precipitation Evaporation Index (SPI). 

If there is sufficient climate data representative of the catchment, including temperature (minimum and 
maximum), the SPEI will be preferred. Otherwise, the SPI will be used as an alternative method. These 
two methods are discussed below.   

2.2.1 STANDARDIZED PRECIPITATION INDEX  
For this task, the method for computing standardized precipitation index (SPI) will be based on 
the approach by McKee et al. (1993) and Edwards et al., (1997) to study relative departures of 
precipitation from normality. This method has been widely applied in many studies across 
different climate regions (Vicente-Serrano, 2006; Vicente-Serrano et al., 2010; Guenang and 
Mkankam Kamga, 2014). Monthly precipitation will be aggregated at various time scales 
(1,3,6,12,18, and 24 months). An illustration is provided by Guenang and Mkankam Kamga, 
(2014), e.g. for a 3-month time scale, the precipitation accumulation from month j-2 to month j is 
summed and attributed to month j (Guenang and Mkankam Kamga, 2014). At this time scale, the 
first two months of the data time series are missing. This is followed by a normalization 
procedure, in which an appropriate probability density function is first fitted to the long term 
time series of aggregated precipitation. Then the fitted function is used to calculate the 
cumulative distribution of the data points, which are finally transformed into standardized 
normal variates. This procedure is repeated for the desired time scales (Guenang and Mkankam 
Kamga, 2014).  

For the case study under consideration, various distributions will be tested and the L-Moments 
and Probability Weighted Moments (PWM) will be used to fit the chosen probability distribution 
(whose choice will depend on the results of the goodness-of-fit test statistic used).  

2.2.2 STANDARDIZED PRECIPITATION EVAPORATION INDEX (SPEI) 
 
The SPEI ((Vicente-Serrano et al., 2010) method will be used. It has been credited for 
incorporating evaporation into the standard SPI thereby allowing for inclusion of water balance. 
The method has found wide application across many areas of different climatic zones (Vicente-
Serrano et al., 2010; Yu et al., 2014; Wang et al., 2015, Byakatonda et al., 2016). The following 
procedure is adopted for computation of SPEI: 
 

i) Determination of the Potential Evapotranspiration ETo 
ii) Accumulation of climate water balance (Di) at different time scales (i.e. Pi-EToi) 
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iii) Normalization of the water balance into a probability distribution function to obtain 
the SPEI index series.  

2.2.2.1 DETERMINATION OF THE POTENTIAL EVAPOTRANSPIRATION (ET0)) 
 

From the numerous existing ETo equations, the FAO-56 application of the Penman-Monteith 
(PM) equation (Allen et al., 1998) has received wide application. The method is widely used and 
recommended by the Food and Agricultural organization FAO Statistics (1998), the International 
Commission on Irrigation and Drainage (ICID) and the American Society of Civil Engineers 
(ASCE) as a robust procedure because it is predominately a physically based method (Vicente-
Serrano et al., 2010). A major limitation to the application of the PM however, is the relatively 
high data demand in the form of air temperature, wind speed, relative humidity, and solar 
radiation. These datasets however, are not always available for the desired case studies.  
 
An alternative approach was developed by Hargreaves (1994) where only mean maximum and 
mean minimum air temperature and extraterrestrial radiation are required. The extraterrestrial 
radiation in the computation can be calculated for a certain day and location. Due to the limited 
data availability, the  Hargreaves (1994) method offers a better alternative. The study will follow 
the approach as implemented by Droogers and Allen (2002),, and Byakatonda et al (2018). The 
following equation will be used to compute ETo: 
 
૙ࢀࡱ = ૙. ૙૙૛૜(࢔ࢇࢋ࢓ࢀ + ૚ૠ. ૡ)(࢞ࢇ࢓ࢀ − ૙.૞(࢔࢏࢓ࢀ ∗ ૙. ૝૙ૡ(2.2)                                          ࢇࡾ 

Where, 

Tmean  is the mean air temperature (0C), 

Tmax is the maximum air temperature (0C), 

Tmin  is the minimum air temperature (0C) 

Ra is extraterrestrial radiation [MJ m-2 day-1] and is given by: 

 

ࢇࡾ =
૛૝(૟૙)

࣊
࢙࣓]࢘ࢊࢉ࢙ࡳ (࣐)࢔࢏࢙ (ࢾ)࢔࢏࢙ (࣐)࢙࢕ࢉ+ (ࢾ)࢙࢕ࢉ  (2.2)                                           [(࢙࣓)࢔࢏࢙

Where, 

Gsc  is solar constant = 0.0820 MJ m-2 min-1, 

dr  is inverse relative distance Earth-Sun (Equation 2.3), 

ωs  is sunset hour angle (Equation  2.6) [rad], 

φ  is latitude [rad], 

δ  is solar declination (Equation 2.4) [rad]. 

The inverse relative distance Earth-Sun, dr, and the solar declination, δ, are given by: 

࢘ࢊ = ૚ + ૙. ૙૜૜ ࢙࢕ࢉ ቀ
૛࣊

૜૟૞
 ቁ                                                        (2.3)ࡶ
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ࢾ = ૙. ૝૙ૢ ࢔࢏࢙ ቀ
૛࣊

૜૟૞
ࡶ − ૚. ૜ૢቁ                                                               (2.4)  

Where J is the average Julian day of the month given by 

ࡶ =

ە
ۖ
۔

ۖ
ۓ ቀ

૛ૠ૞ࡹ

ૢ
− ૜૙ + ቁࡰ − ૛         ࡹ > ૜

ቀ
૛ૠ૞ࡹ

ૢ
− ૜૙ + ቁࡰ ࡹ                < ૜

ቀ
૛ૠ૞ࡹ

ૢ
− ૜૙ + ቁࡰ + ૚               ࡹ > ૛ ࢘ࢇࢋ࢟ ࢖ࢇࢋ࢒ ࢘࢕ࢌ

                                   (2.5) 

D=15 for average month 

The sunset hour angle, ωs, is given by: 

࢙࣓ = −]૚ି࢙࢕ࢉ ࣐)࢔ࢇ࢚  (2.6)                                            [(ࢾ)࢔ࢇ࢚(

2.2.2.2 ACCUMULATION OF CLIMATE WATER BALANCE (DI) SERIES 
 
With ETo established, the monthly water balance will be calculated as a difference between 
Precipitation (Pi) and evapotranspiration (EToi) as follows: 
 
࢏ࡰ = ࢏ࡼ −   (2.7)                                                                             ࢏૙ࢀࡱ

Where, 
P  is monthly precipitation 
i  is month under consideration 
 
The calculated Di values will be aggregated at different time scales, following the same 
procedure as that for the SPI. The difference D୨,୧

୩   in a given month j and year i depends on the 
chosen time scale k. For example, the accumulated difference for one month in a particular year i 
with a 12-month time scale is calculated using 

࢏,࢐ࢄ
࢑ = ∑ ࢒,૚ି࢏ࡰ + ∑ ࢐ ࢌ࢏  ࢒,࢏ࡰ < ࢐ ࢊ࢔ࢇ ࢑

ୀ૚࢒   ૚૛
࢏ା࢑ୀ૚૜ି࢒                                             (2.8) 

࢏,࢐ࢄ
࢑ = ∑ ࢐ ࢌ࢏  ࢒,࢏ࡰ ≥ ࢐  ࢑

ା૚࢑ି࢐ୀ࢒                                                          (2.9)  

Where Di,l is  P୧ − ET଴୧   the difference in the first month of year j, in millimeters and 
D୨,୧

୩ = X୨,୧
୩ = D୧ series.  

 

2.2.2.3 NORMALIZATION OF THE WATER BALANCE SERIES  
 
In quantifying SPEI a three parameter distribution will be used, since in the two parameter 
distributions the variable (Di) has a lower boundary of zero (0> D <∞) which is the case in SPI 
that uses precipitation series with a lower minimum of 0.0 mm (Potop et al., 2010; Vicente-
Serrano et al., 2010), whereas in three parameter distributions x in this case Di series can take 
values in the range ߛ>D <∞, where ߛ is the parameter of origin of the distribution, consequently 
D can have negative values, in an event of a deficit climate balance. The water balance series 
were normalized as twelve independent series. The method of L-Moments in combination with 
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probability weighted moments (PWMs) will be used for parameter estimation of the probability 
distribution functions fitting the Di series. Parameters resulting from this procedure are more 
stable against possible outliers in the series data (Haktanira and Bozduman, 1995). The unbiased 
probability weights as suggested by (Hosking et al., 1985) and presented in Haktanira and 
Bozduman (1995) is given by; 
 

࢏ࡼ
࢘ =

(࢘ି࢏).……(૛ି࢏)(૚ି࢏)

(࢘ି࢔).……(૛ି࢔)(૚ି࢔)
                                                                                    

 (2.10) 
 

Where,  

Pi
r    is the probability weight, 

i     is the rank assigned to the data series arranged in ascending order, 
n    are number of observations, 
r    is the order 
 
The L-moments permit the comparison of various candidate distributions frequency (Hosking 
and Wallis, 2005). To identify the candidate distributions, L-moment ratios (L-Skewness τ3 and 
L-Kurtosis τ4) will be calculated as follows; 
 

߬ଷ =
ఒయ

ఒమ
                                                                   (2.11) 

  

߬ସ =
ఒర

ఒమ
                                                   (2.12) 

                              

and note that the L-coefficient of variance, ܮ −  :௩(߬ଶ); is given byܥ
 

߬ଶ =
ఒమ

ఒభ
               (2.13) 

 
λ2, λ3 and λ4 are L-moments of the of the Di series computed from probability weighted moments 
(PWMs) as indicated in equations below: 
 
ଵߣ =  ଴            (2.14)ܯ

 
ଶߣ = ଵܯ2 −  ଴                                                     (2.15)ܯ

 

ଷߣ = ଶܯ6 − ଵܯ6 +  ଴                                                (2.16)ܯ

 

ସߣ = ଷܯ20 − ଶܯ30 + ଵܯ12 −  ଴                                          (2.17)ܯ
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These four moments are analogous to the first four conventional moments of ܺ (i.e. mean, 

variance, skewness and kurtosis).     

 
The PWMs of order r are given by, 
 

௥ܯ =
ଵ

ே
∑ ௜ܲ

௥ . ܺ௜
ே
௜ୀଵ                                                        (2.18) 

 

ܫܧܲܵ = ܹ −
஼బା஼భௐା஼మௐమ

ଵାௗభௐାௗమௐమାௗయௐయ                                                                            (2.19) 

 

Where 

W = ඥ−2 ln(P)   for P ≤ 0.5 and P is the probability of exceeding a determined D value. The P 
value is obtained from P = 1 − F(x). If P>0.5, then P is replaced by 1-P and the sign of the 
resultant SPEI is reversed. The constants are C0=2.515517, C1=0.802853, C2=0.010328, 
d1=1.432788, d2=0.189269, d3=0.001308 
 
The average value of SPEI is 0, and the standard deviation is 1. The SPEI is a standardized 
variable, and it can therefore be compared with other SPEI values over time and space. For each 
time scale, each drought event (period in which SPEI is continuously negative and SPEI ≤ -1), 
will be defined through its (i) duration (time from the beginning to the end), (ii) severity (SPEI 
value for each month following a given classification), (iii) magnitude (SPEI sum for each month 
and for the duration of the severity), (iv) intensity (magnitude/duration ratio of the event). 
 

2.2.3 ARIDITY INDEX (AI) 
 

Among the indices defined for the determination of agricultural water demands (World 
Meteorological Organization, 1975) is the aridity index introduced by (de Martonne 1926). Its 
monthly values are described by the following equation as presented in Livada and 
Assimakopoulos (2007): 
 

࢏ࡵ =
૚૛࢏ࡼ

(૚૙ା࢏ࢀ)
                                                            (2.20) 

Where, Pi is the monthly precipitation amount and Ti is the respective mean monthly air 
temperature. 
 
The purpose of this index (de Martonne 1926) is to identify the months for which actual 
evapotranspiration starts to drop below the potential evapotranspiration leading to shortness of 
water for optimal plant growth, which in turn depends both on rainfall and ambient temperature. 
Thus, irrigation according to this index becomes necessary when Ii<20. AI will there be 
determined and the months for which Ii<20 will be highlighted.  
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2.3 MAPPING OF DRYNESS INDICES 
The results obtained for SPI/SPEI and AI will be compiled and mapped to obtain spatially interpolated 
indices over the Zambezi basin, as well as time series for selected stations representative of the basin. In 
addition, other variables such as trends, variability will be plotted for the basin.   

 

2.4 EXTREME EVENTS ANALYSIS 
 

2.4.1 REGIONAL FLOOD FREQUENCY ANALYSIS 
To study and characterize extreme flow events in the basin, there is need to develop regional 
growth curves by identifying suitable regional distribution curves for estimation of floods of 
different return periods for the basin.  This will be achieved using L-moments (Hosking, 1990) 
which has been credited for providing parameter estimates that are nearly unbiased and highly 
efficient and thus are better suited for use in constructing moment diagrams.. 

2.4.1.1 L-MOMENTS 

Hosking (1990) introduced L-moments as a linear combination of PWMs. The PWMs, defined 

by Greenwood et al. (1979) for a non-negative integer may be given as: 

࢘ࢼ =  (2.21)                    [࢘{(࢞)ࡲ}࢞]ࡱ

 

which can be written as: 

࢘ࢼ = ׬ ࢞
૚

૙
,ࡲࢊ࢘ࡲ(ࡲ) ࢘ = ૙, ૚, ૛, …                  (2.22) 

            

where, F = F(x) is the cumulative distribution function (CDF) for x, x(F) is the inverse CDF of x 

evaluated at the probability F. When r = 0, ߚ଴is equal to the mean of the distribution ߤ =  .[ݔ]ܧ

Hosking (1990) defined rth L-moments related to the rth PWMs as: 

ା૚࢘ࣅ = ∑ ࢘൫ࣄି࢘(૚−)ࣄࢼ
ࣄା࢘൯൫ࣄ

ࣄ ൯࢘
ୀ૙࢑                              (2.23) 

 

Using the ranked data (in the ascending order), an unbiased estimate of sample Probability 
Weighted Moments (PWM) can be computed from Equation (2.10). The L-moments and their 
PWMs counter parts are given in Equations (2.14 to 2.17).  
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Computed values of ߬ଷ ܽ݊݀ ߬ସ  (i.e. L-skewness ܮ − ܮ ,௦ (߬ଷ) and L-kurtosisܥ − ఑ܥ  (߬ସ)) are 
then plotted on to the Theoretical L-Moment ratio diagram (shown as +) which suggests the 
likely/possible statistical distribution which could be used for analysis. The theoretical L-
moment ration diagram for five commonly used distributions of three parameters is presented in 
Figure 2.1. 

 

Figure 2-2. Theoretical plots of L-skew versus L-kurtosis diagram for some common statistical 
distributions (viz: Generalised Pareto (GPA), Generalised Extreme Values (GEV), Generalised Logistic 
(GLO), 3 Parameter Log-normal (LN3), Pearson Type 3 (PE3) Distribution) (Hosking and Wallis, 1996) 

The flood quantiles for each return period for the basin (or for regions identified as 
homogeneous within the basin) will be computed based on the identified suitable probability 
distribution to produce regional growth curve.  
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3 DATA NEEDED 

3.1 OBSERVED DATA 
In order to implement the proposed methodology, the following data is needed (Table 3-1): 
Table 3-1: Milestones and dates 

 
Method Data Needed Temporal 

Resolution 
Data format Period of 

Analysis 
SPI Rainfall 

data/Remote 
sensed data (eg 
TRMM)or 
Reanalysis data (eg 
NCEP) 

Monthly Raster or Point data  
 
 
 
 
1980-2016 

SPEI Rainfall, 
Temperature 
(Mean, Maximum 
and Minimum), 
Sunshine hour 
data/Remote 
sensed data (eg 
TRMM)or 
Reanalysis data (eg 
NCEP) 

Monthly Raster or Point data 

AI Rainfall, 
Temperature 
(Mean) /Remote 
sensed data (eg 
TRMM)or 
Reanalysis data (eg 
NCEP) 

Monthly Raster or Point data 

RFFA Streamflow data & 
Flood data/ 
Reanalysis data (eg 
NCEP) 

Daily/monthly Point data/Time/ 
Gridded  

Intervention 
Analysis 

Rainfall, 
Temperature (Min, 
Max), Relative 
Humidity/Remote 
sensed data (eg 
TRMM)or 
Reanalysis data (eg 
NCEP) 

Monthly Point data/Time 
Series/Raster/Gridded 
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3.2 ALTERNATIVE DATA PRODUCTS AND SOURCES 

3.2.1 REMOTE SENSING AND SATELLITE DATA 
In the absence of observed datasets, remote sensing data will be used. This includes, for example 
the Tropical Rainfall Measuring Mission (TRMM) rainfall products (https://pmm.nasa.gov/data-
access/downloads/trmm).   

3.2.2 GRIDDED AND REANALYSIS DATA 
Gridded climate data from the Climatic Research Unit (CRU) will be used. This includes 
monthly temperature and rainfall from 1901 to 2015, available at 
https://climatedataguide.ucar.edu/climate-data/cru-ts-gridded-precipitation-and-other-
meteorological-variables-1901.  

In addition, reanalysis data (i.e. the National Centers for Environmental Prediction (NCEP) and 
the National Center for Atmospheric Research (NCAR) known as the NCEP/NCAR data, 
https://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml ) will be used.  

These datasets will be validated using data from neighboring areas or areas with similar 
environmental setting as a form of ground truthing.  .  

4 EXPECTED OUTPUTS AND TIME LINES 
 

Table 4-1 below shows the milestones and dates as per the contract. 

Table 4-1: Milestones and dates 

Milestone  Activity Description Milestone Date 
M-1.0 
 
M-1.1 

Inception Report 
 
PowerPoint Presentation on CV 
and Extreme Events 

Dec 2017 
 
Nov 2017 
 

M-2.0 
M-2.1 
M-2.2 
M-2.3 

Draft Report and Database 
Data Collection and Collation 
Data Quality checks 
Data analysis  and model 
development 

Sept 2018 
Jan-Feb 2018 
Feb-2018 
Mar-Aug 2018 

M-3.0 
 
 
M-3.1 

Report, database and model on 
Climate Variability and Extreme 
Events Analysis 
Report Writing-Draft 
 

Nov 2018 
 
 
Sept-Oct 2018 
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