
WRM 625
Hydrological Modeling
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Convex Routing Method
• Simplified procedure for routing hydrographs 

through stream reaches based on:

• Assumes m/d = 1 and x=0
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Convex Routing
• Since m/d=1 and x=0, then                                                      

reduces to: 

• If           and             in                              and 
substituting for S gives

• Rearranging and solving for the unknown        
gives                                    or 
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Convex Routing

• Suppose                         in                             , then

• For analysis and synthesis, the upstream 
hydrograph is known in both cases.

• For analysis, the downstream hydrograph is also 
known, but the routing coefficient C is not known.
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Example
• Suppose the routing coefficient of a stream 

reach is 0.3 and It = 25 and Ot = 13 for t=0 and  
the next It values are 28,33, and 41, compute the 
next Ot value .

• Solution: The routing equation is

• Assigned task: 4 methods for estimating C (Mc 
Cuen) 

I O
25 13
28 17=0.3(25)+0.7(13)
33 20=0.3(28)+0.7(17)
41 24=0.3(33)+0.7(20)

tttt OIO 7.03.0 +=∆+



Wedge and 
Prism Storage

• Positive wedge I > Q

• Maximum S when I = Q

• Negative wedge    I < Q



Muskingum Method

Sp = K O

Sw = K(I - O)X

Prism Storage

Wedge Storage

CombinedS = K[XI + (1-X)O]

Wedge

Prism



Hydrologic river routing (Muskingum 
Method)

Wedge storage in 
reach

I Q
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K = travel time of  peak through the reach
X = weight on inflow versus outflow (0 ≤ X ≤ 0.5)
X = 0  Reservoir, storage depends on outflow, 
no wedge
X = 0.0 - 0.3  Natural stream
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Muskingum Method for 
Hydrologic River flood Routing

• Based                                                  and the 

storage function    
• Let m/d=1 and k=b/a, then  we have 

• Substituting into the routing equation gives
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Muskingum Method

• Solving                                                                                       

and rearranging yields

Where                           ,                         and 
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= C2 = 1 – Co – C1

Note: K and ∆t must have the same unit and initial estimate of O1
must be specified as well as K and ∆t .



Muskingum Routing Equation

where C’s are functions of x, K, ∆t and sum to 1.0 
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Muskingum Equations
where

C0 = (– Kx + 0.5∆t) / D

C1 = (Kx + 0.5∆t) / D

C2 = (K – Kx – 0.5∆t) / D

D = (K – Kx + 0.5∆t) 

Repeat for O3, O4, O5 and so on.



Estimating K

• K is estimated to be the travel time through the 
reach.  

• This may pose somewhat of a difficulty, as the 
travel time will obviously change with flow.  

• The question may arise as to whether the travel 
time should be estimated using the average flow, 
the peak flow, or some other flow.  

• The travel time may be estimated using the 
kinematic travel time or a travel time based on 
Manning's equation.



Estimating X

• The value of X must be between 0.0 and 0.5.  
• The parameter X may be thought of as a weighting coefficient for inflow 

and outflow.  
• As inflow becomes less important, the value of X decreases.  
• The lower limit of X is 0.0 and this would be indicative of a situation 

where inflow, I, has little or no effect on the storage.  
• A reservoir is an example of this situation and it should be noted that 

attenuation would be the dominant process compared to translation.  
• Values of X = 0.2 to 0.3 are the most common for natural streams; 

however, values of  0.4 to 0.5 may be calibrated for streams with little or 
no flood plains or storage effects.  

• A value of X = 0.5 would represent equal weighting between inflow and 
outflow and would produce translation with little or no attenuation.



Estimating Muskingum Parameters, 
K and x

Graphical Method:
• Referring to the Muskingum Model, find X such 

that the plot of XIt+ (1-X)Ot (m3/s) vs   St (m3/s.h) 
behaves almost nearly as a single value curve. 
Assume value of x lies between 0 and 0.3.

• The corresponding slope is K.



Muskingum Routing Procedure

• Given (knowns): O1; I1, I2, …; ∆t; K; X
• Find (unknowns): O2, O3, O4, …

• Procedure:
(a) Calculate Co, C1, and C2

(b) Apply Ot+1 = Co It+1 + C1 It + C2 Ot starting from 
t=1, 2, … recursively.



Muskingum Notes :
• The method assumes a single stage-discharge relationship.
• In other words, for any given discharge, Q, there can be only 

one stage height.
• This assumption may not be entirely valid for certain flow 

situations. 
• For instance, the friction slope on the rising side of a 

hydrograph for a given flow, Q, may be quite different than for 
the recession side of the hydrograph for the same given flow, 
Q.

• This causes an effect known as hysteresis, which can introduce 
errors into the storage assumptions of this method.
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Muskingum Example Problem

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 3
1 5
2 10
3 8
4 6
5 5

•A portion of the inflow hydrograph to a reach of channel is 
given below.  If the travel time is K=1 unit and the weighting 
factor is X=0.30, then find the outflow from the reach for the 
period shown below:
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Muskingum Example Problem
•The first step is to determine the coefficients in this problem.  
•The calculations for each of the coefficients is given below:

t0.5 + Kx - K
t0.5 - Kx - = C0 ∆

∆

C0= - ((1*0.30) - (0.5*1)) / ((1-(1*0.30) + (0.5*1)) = 0.167

t0.5 + Kx - K
t0.5 + Kx = C1 ∆

∆

C1= ((1*0.30) + (0.5*1)) / ((1-(1*0.30) + (0.5*1)) = 0.667
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Muskingum Example Problem

C2= (1- (1*0.30) - (0.5*1)) / ((1-(1*0.30) + (0.5*1)) = 0.167

t0.5 + Kx - K
t0.5 - Kx - K = C2 ∆

∆

Therefore the coefficients in this problem are:
•C0 = 0.167
•C1 = 0.667
•C2 = 0.167
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Muskingum Example Problem

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 0.835 2.00 0.501 3
1 5
2 10
3 8
4 6
5 5

•The three columns now can be calculated.
•C0I2 = 0.167 * 5 = 0.835
•C1I1 = 0.667 * 3 = 2.00
•C2O1 = 0.167 * 3 = 0.501
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Muskingum Example Problem

•Next the three columns are added to determine the 
outflow at time equal 1 hour.

•0.835 + 2.00 + 0.501 = 3.34

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 0.835 2.00 0.501 3
1 5 3.34
2 10
3 8
4 6
5 5
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Muskingum Example Problem

•This can be repeated until the table is complete and the 
outflow at each time step is known.

Time Inflow C0I2 C1I1 C2O1 Outflow
0 3 0.835 2.00 0.501 3
1 5 1.67 3.34 0.557 3.34
2 10 1.34 6.67 0.93 5.57
3 8 1.00 5.34 1.49 8.94
4 6 0.835 4.00 1.31 7.83
5 5 3.34 1.03 6.14
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End of lecture  6
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